Untersuchungsergebnisse zur Alzheimer-Erkrankung: MAPT-Variante steigern das Risiko für dementielle Erkrankungen

|   Forschungsergebnisse

In den hier beschriebenen Forschungsuntersuchungen wurde ersichtlich, dass die MAPT-Sequenzvariante vom Typ p.A152T einen Risikofaktor für dementielle Erkrankungsprozesse, u.a. der Alzheimerdemenz, darstellen. Aus den Untersuchungsergebnissen von insgesamt 15.369 Studienteilnehmern zeigte sich, dass bei einigen Personen die benannte Sequenzvariante nachweisbar war, zudem diese auch Symptome oder auch das Vollbild einer dementiellen Erkrankung, vielfach auch vom Alzheimer-Typ, aufgezeigt haben. Entsprechend wurde hierdurch ein Untersuchungsnachweis auch für genetisch bedingte Auslöser, vorliegend der beschriebenen MAPT-Sequenzvariante vom Typ p.A152T, erbracht.

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3796183/

References/ Literaturverweise 

Coppola G, Chinnathambi S, Lee JJ, et al. Evidence for a role of the rare p.A152T variant in MAPT in increasing the risk for FTD-spectrum and Alzheimer's diseases. Hum Mol Genet. 2012 May 16; [PMC free article] [PubMed] [Google Scholar]

AD&FTDMDB. http://www.molgen.ua.ac.be/FTDMutations.

Kovacs GG, Wohrer A, Strobel T, Botond G, Attems J, Budka H. Unclassifiable tauopathy associated with an A152T variation in MAPT exon 7. Clin Neuropathol. 2011 Jan-Feb;30(1):3–10. [PubMed] [Google Scholar]

Kara E, Ling H, Pittman AM, et al. The MAPT p.A152T variant is a risk factor associated with tauopathies with atypical clinical and neuropathological features. Neurobiol Aging. 2012 May 15; [PMC free article] [PubMed] [Google Scholar]

Kramer JH, Jurik J, Sha SJ, et al. Distinctive neuropsychological patterns in frontotemporal dementia, semantic dementia, and Alzheimer disease. Cogn Behav Neurol. 2003 Dec;16(4):211–218. [PubMed] [Google Scholar]

Dierckx E, Engelborghs S, De Raedt R, et al. The 10-word learning task in the differential diagnosis of early Alzheimer's disease and elderly depression: A cross-sectional pilot study. Aging Ment Health. 2010 Jan;15(1):113–121. [PubMed] [Google Scholar]

Morris JC. The Clinical Dementia Rating (CDR): current version and scoring rules. Neurology. 1993 Nov;43(11):2412–2414. [PubMed] [Google Scholar]

Cummings JL, Mega M, Gray K, Rosenberg-Thompson S, Carusi DA, Gornbein J. The Neuropsychiatric Inventory: comprehensive assessment of psychopathology in dementia. Neurology. 1994 Dec;44(12):2308–2314. [PubMed] [Google Scholar]

Renton AE, Majounie E, Waite A, et al. A hexanucleotide repeat expansion in C9ORF72 is the cause of chromosome 9p21-linked ALS-FTD. Neuron. Oct 20;72(2):257–268. [PMC free article] [PubMed] [Google Scholar]

DeJesus-Hernandez M, Mackenzie IR, Boeve BF, et al. Expanded GGGGCC hexanucleotide repeat in noncoding region of C9ORF72 causes chromosome 9p-linked FTD and ALS. Neuron. Oct 20;72(2):245–256. [PMC free article] [PubMed] [Google Scholar]

Wade-Martins R. Genetics: The MAPT locus-a genetic paradigm in disease susceptibility. Nat Rev Neurol. 2012 Sep;8(9):477–478. [PubMed] [Google Scholar]

Romano S, Colosimo C. Procerus sign in progressive supranuclear palsy. Neurology. 2001 Nov 27;57(10):1928. [PubMed] [Google Scholar]

Litvan I, Agid Y, Calne D, et al. Clinical research criteria for the diagnosis of progressive supranuclear palsy (Steele-Richardson-Olszewski syndrome): report of the NINDS-SPSP international workshop. Neurology. 1996 Jul;47(1):1–9.[PubMed] [Google Scholar]

Neary D, Snowden JS, Gustafson L, et al. Frontotemporal lobar degeneration: a consensus on clinical diagnostic criteria. Neurology. 1998 Dec;51(6):1546–1554. [PubMed] [Google Scholar]

Gorno-Tempini ML, Hillis AE, Weintraub S, et al. Classification of primary progressive aphasia and its variants. Neurology. 2011 Mar 15;76(11):1006–1014. [PMC free article] [PubMed] [Google Scholar]

Lee SE, Rabinovici GD, Mayo MC, et al. Correlates of Alzheimer's Disease Pathology in Corticobasal Syndrome. Ann Neurol. 2011 [Google Scholar]

McKhann G, Drachman D, Folstein M, Katzman R, Price D, Stadlan EM. Clinical diagnosis of Alzheimer's disease: report of the NINCDS-ADRDA Work Group under the auspices of Department of Health and Human Services Task Force on Alzheimer's Disease. Neurology. 1984 Jul;34(7):939–944. [PubMed] [Google Scholar]

Boeve BF, Maraganore DM, Parisi JE, et al. Pathologic heterogeneity in clinically diagnosed corticobasal degeneration. Neurology. 1999 Sep 11;53(4):795–800. [PubMed] [Google Scholar]

Forman MS, Farmer J, Johnson JK, et al. Frontotemporal dementia: clinicopathological correlations. Ann Neurol. 2006 Jun;59(6):952–962. [PMC free article] [PubMed] [Google Scholar]

Hodges JR, Davies RR, Xuereb JH, et al. Clinicopathological correlates in frontotemporal dementia. Ann Neurol. 2004 Sep;56(3):399–406. [PubMed] [Google Scholar]

Josephs KA, Duffy JR, Strand EA, et al. Clinicopathological and imaging correlates of progressive aphasia and apraxia of speech. Brain. 2006 Jun;129(Pt 6):1385–1398. [PMC free article] [PubMed] [Google Scholar]

Josephs KA, Petersen RC, Knopman DS, et al. Clinicopathologic analysis of frontotemporal and corticobasal degenerations and PSP. Neurology. 2006 Jan 10;66(1):41–48. [PubMed] [Google Scholar]

Llado A, Sanchez-Valle R, Rey MJ, et al. Clinicopathological and genetic correlates of frontotemporal lobar degeneration and corticobasal degeneration. J Neurol. 2008 Apr;255(4):488–494. [PubMed] [Google Scholar]

Josephs KA, Dickson DW. Diagnostic accuracy of progressive supranuclear palsy in the Society for Progressive Supranuclear Palsy brain bank. Mov Disord. 2003 Sep;18(9):1018–1026. [PubMed] [Google Scholar]

Litvan I, Agid Y, Goetz C, et al. Accuracy of the clinical diagnosis of corticobasal degeneration: a clinicopathologic study. Neurology. 1997 Jan;48(1):119–125. [PubMed] [Google Scholar]

Rohrer JD, Geser F, Zhou J, et al. TDP-43 subtypes are associated with distinct atrophy patterns in frontotemporal dementia. Neurology. Dec 14;75(24):2204–2211. [PMC free article] [PubMed] [Google Scholar]

Rabinovici GD, Jagust WJ, Furst AJ, et al. Abeta amyloid and glucose metabolism in three variants of primary progressive aphasia. Ann Neurol. 2008 Oct;64(4):388–401. [PMC free article] [PubMed] [Google Scholar]

Whitwell JL, Jack CR, Jr, Przybelski SA, et al. Temporoparietal atrophy: A marker of AD pathology independent of clinical diagnosis. Neurobiol Aging. 2009 Nov 13; [PMC free article] [PubMed] [Google Scholar]

Gorno-Tempini ML, Dronkers NF, Rankin KP, et al. Cognition and anatomy in three variants of primary progressive aphasia. Ann Neurol. 2004 Mar;55(3):335–346. [PMC free article] [PubMed] [Google Scholar]

Hayashi S, Toyoshima Y, Hasegawa M, et al. Late-onset frontotemporal dementia with a novel exon 1 (Arg5His) tau gene mutation. Ann Neurol. 2002 Apr;51(4):525–530. [PubMed] [Google Scholar]

Poorkaj P, Muma NA, Zhukareva V, et al. An R5L tau mutation in a subject with a progressive supranuclear palsy phenotype. Ann Neurol. 2002 Oct;52(4):511–516. [PubMed] [Google Scholar]

Carmel G, Mager EM, Binder LI, Kuret J. The structural basis of monoclonal antibody Alz50's selectivity for Alzheimer's disease pathology. J Biol Chem. 1996 Dec 20;271(51):32789–32795. [PubMed] [Google Scholar]

 

Zurück